If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-1000x+1000=0
a = 2; b = -1000; c = +1000;
Δ = b2-4ac
Δ = -10002-4·2·1000
Δ = 992000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{992000}=\sqrt{6400*155}=\sqrt{6400}*\sqrt{155}=80\sqrt{155}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1000)-80\sqrt{155}}{2*2}=\frac{1000-80\sqrt{155}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1000)+80\sqrt{155}}{2*2}=\frac{1000+80\sqrt{155}}{4} $
| 8n+21=13n+16 | | x/7-6=-15 | | 4.9=(60.062+4*h*h)/8h | | 7x-26=5x10 | | -20=-2(y+6) | | p+9/9=4 | | 5n-7=20+2n | | 4.9+8h=60.062+4*h*h | | (10x-3)/3+(5x+)/4=5 | | 3-(2c-4)=8 | | 10(32-7y)+11y=128 | | 3(u-2)-5u=-2(u+2)= | | 7-4x+3=x+6-3x | | 4m+8=4m-11 | | 6(4x+1)=40+7x | | 25+5n=7+15n | | n2–50n=0 | | -4h^2+4.9*8h=60.062 | | x+0.4/3.2=x/2 | | (33b-5)-8(4b+4)=-5 | | Y=(2/3x-25/3) | | 4.9*8h=60.062+4*h*h | | 6-(4y-2)=1-5y | | 5.5x+50=180 | | X/7x=63 | | y=17(4+10)-8*10/7-10 | | 3x+19=24−3 | | 3(x+5=33 | | 9x+9=4x+5 | | 22/4x+50=180 | | 8x/6=72/45 | | 3(y-9)=2(7+y) |